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Introduction g Results

In our previous study... ‘ Early-life exposure to TaClo and MPTP led to altered neurotransmitter levels ‘ ‘ Early-life exposure to TaClo inhibited stress response in larval stage (con’t) ‘ ‘ 1.75 uM MPTP upregulated glutamate transporter (SLCA12) expression in zebrafish larvae ‘
e Embryonic zebrafish served as a good platform for investigating the underlying
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Severe Cerebellar Dysplasia and Congenital Hydrocephalus Associated with Mice Lacking Hsd17b7 in Wnt1 Cell Lineages
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Background Hsd17b7Fox\WT - Wnt1cre2¢"¢WT mice display severe forebrain and cerebellar phenotypes Conclusions/Discussion

Cholesterol Biosynthesis and Cholesterol in Neural Development Clinical assessment, P17 Litters Hsd17b7F'oWT- Wnt1cre2CeWT vs WT littermates « Ourdata revggls that loss of.Hsd1_7b7. in th1 cell lineages does lead to developmental abnormalities within
_ _ o _ _ _ Genotype by Age Group structures arising from the midbrain hindbrain boundary.
. g hoclje'?teml p!iaystr?'n It?mtegral ?Ie Inf Eegralhdevglopﬁne%and s invelved in fhe formation of myelin, synapses. S™INMMNR oo ww Genotyping of different age groups reveals that Proposed Mechanisms; Congenital hydrocephalus
endrites, and within the function of hedgehog signaling’-2. z 0 WIWT. CremwT _ _ ;
B il i B[O Wi, WA mutants are underrepresented at birth suggesting « While the formation of the SCO is not fully understood, past research has shown that Wnt1 lineages are vital to the
- Disruptions in cholesterol biosynthesis during development leads to a suite of diseases collectively referred to as g B Fatholgic group) perinatal mortality. Mice with the pathologic formation of the posterior SCOS. We proposed that in the absence of Hsd17b7, Wnt1 cell lineages are non-viable,
Cholesterol Biosynthesis Malformation Syndromes. The mechanisms underlying these diseases are still poorly s [IHHPF phenotype must be euthanized around P17 due to leading to disrupted SCO formation. This causes impeded cerebral spinal fluid flow and secondary
understood, and treatment is limited. These diseases are believed to be due not only to a decrease in cholesterol, but 2 the severity of neurologic signs. hydrocephalus.
also an increase in potentially toxic cholesterol precursors??2. = AL Proposed Mechanisms; Cerebellar changes
R P 12 = —
Post-Squalene Biosynthesis Pathway (Simplified) J&"@(v(" ‘0'3;«@‘2 E11.5 mouse rhombencephalon E11.5 mouse rhombencephalon E11.5 mouse cerebellar
Lanosterol — A81424-Dimethylsterol —» g.(z;—)l?;rzgzr]tyrlic;r:g%s;a;- . g,é—)l?zimztgl_gré?(ljsta- Age Group Clinical assessment. P17 Litters depiction; Sagittal plane depiction; Transverse plane primordia; Sagittal plane
" ' o P17 Body Weight
Dihydrolanosterol 4,4-Dimethylcholesta-8(9),14dien-3B-ol  4a-Carboxy-4B-methyl-zymosterol Hsd17b7Fox WT,' Whnt1cre2CeWT mice 15- Mesencephalon -
# ' « Body Condition Score of 2/5 with marked muscle wasting, stunting : bl ) 1sthmic rganizer 10
PR S— 3'Ke‘°“l°‘2e‘hy"zym°3te’°' » Severely ataxic, slow, and frequently circled with noted intention tremors 1 P 10 sthic Organizer pper thombie p (R
¢ AesRfyizysosterol * Severe balance deficits (flipping onto their back) with difficulty righting £ | —HT
Kandutsch-Russell Pathway * BehaVior Changes g 5__ ) oe Roof plate (RP)
— Bcf;hb:,aet;v;:tthay 4a-Methylcholesta-8(9),-en-3p-ol 4°'Cafbf"y'zym°5te'°'  did not run from researcher hands but generally responded to ; ol 3
w Associated cholesterol * W Zymosterone stimuli 0 r4 e one
e melformation | & - Stereotypic behavior, i.e. wringing front paws e o Lower hombic
" Area of fisulfzkz meraction Zymastem Amostele Final assessment: Mice displayed neurologic abnormalities consistent Qg@ ,\0«@5
ied | satha l TP with both forebrain localization (determined to be severe hydrocephalus & — Before E8.5, Otx2 (cloudy purple) and Gbx2 (cloudy green) overlap to determine the midbrain-hindbrain boundary. At
athostero a-Cholesta-7,24-dien-33-0 : : 3 ® .9, - .
* l based on external appearance) and cerebellar localization &\0@»"“ Gross changes, .whole bgdy (P17): Hsd1_7b7F'°X/WT; Gross changfes, skull (P17): Hsd17b7_F'°X/WT; Whntlcre2CeWT mice E8.5, Fgf8 and Whnt1 exp),:ezsign are activated at th)é ignterfaceG. P Y
Zdshydiocholesters] +—— 7ddiydiodesmoatero W Whnt1cre2t™WT mice (asterisks) are small with domed heads  have small, thin, soft, domed skulls which lack proper sutures - Fgf8 (pink) defines RO, the isthmic organizer, and drives neurogenesis of the cerebellar primordia, while Wnt1 (dark
% and focal asymmetric white coat discoloration on midline between the bones of the calvaria. purple) marks the edge of the mesencephalon and drives neurogenesis of the mesencephalon®.
+<——  Desmosterol « Cell to cell signaling between Fgf8 and Whnt1 is required at the isthmus for proper neurogenesis of both regions.

%
« At E9, the neural tube closes and the alar plate of r1 gives rise to the roof plate dorsally (yellow, becomes choroid

plexus epithelium of the 41" ventricle), the ventricular zone (blue, gives rise to Purkinje cells and unipolar brush cells),

Subcommissural Organ (SCO) dysplasia results in severe congenital hydrocephalus and the thombic li dorsally (ight green, gives rise {o granular cell precursors)

* Microscopic changes noted at the rhombic lip and roof plate as well as migration of Purkinje cells in the face
*:M“ ; )\ S

Cholesterol

17-Beta-hydroxysteroid Dehydrogenase 7 (Hsd17b7) Gene

« ENU screening recovered perinatal lethal hypomorphic ‘Rudolph’ mutant of Hsd17b7, showing that partial loss of - v — . .
Hsd17b7 results in a severe CNS phenotype prompting further investigation into the role of Hsd77b7 in Wildtype Hsd17b7me™; Wnticre2 P0.5 Third Ventricle P0.5SCO

of correct anatomic positioning of the rhombencephalon suggests that the ischemic organizer is disrupted
after the point of Otx2-Gbx2 patterning.
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he « During cerebellar development, the rostral-caudal axis of dorsal r1 undergoes a 90° rotation to become the medial-

Image from Stottmann et al 2011

« Embryos at embryonic day (E)16.5 with the Rudolph mutation appear dysmorphic when compared to wild-type
littermates. Histological analysis exposes dramatic tissue loss in the mutant as well as disrupted cortical structure and
cleft palate. Mutants appear to have shortened long bones, characteristic of disturbed Hedgehog signaling3.

lateral axis at P3%7. The lateral aspects move in more caudally than the medial aspect moves rostrally, leading to a V-
shaped formation®’. During this process, the vermis remains closet to the isthmic organizer and is more influenced by
Fgf8 signaling more than the lateral hemispheres®’.
,E» ‘Q a : « The vermes has a more severe phenotype than the lateral hemispheres which further supports pathology at

« Tissue-specific gene ablation allows for a more in-depth understanding of the phenotypes occurring upon loss NEREA] AN o | T R T e e R i BRSO e \ A soous, IS the level of the isthmic organizer.
of Hsd17b7 and their associated mechanisms. Gross forebrain changes: Marked hydrocephalus is Histology, Forebrain and SCO: At P0.5, the cerebrum is distended and compressed by fluid and the third ventricle is disrupted (ar n of P0.5 - Based on previous literature and the presented findings, we propose that Hsd17b7 vital for the survival of the
appreciable by P3. brains as seen in the wildtype was apparent in all P0.5 brains due to embedding artifact). The SCO is severely dysplastic (square). P3 dissections similarly reflect isthmic organizer and, in turn, proper neurogenesis of the cerebellum.

distension of ventricles (arrow) with a severely dysplastic SCO.
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Implications and Relevance
* Our model shows that Hsd17b7 and proper cholesterol biosynthesis are required for dorsal midline development and
midbrain-hindbrain boundary patterning.
« Based on our findings, we suspect that without Hsd17b7, Wnt1 cell lineages die, leading to loss of the isthmic
organizer and the subcommissural organ.

Hypothesis: Loss of Hsd77b7 within Wnt1 cell lineages will lead to developmental abnormalities in structures - Hydrocephalus and cerebellar hypoplasia have been rarely linked with some, though not all, cholesterol biosynthesis
arising from the midbrain hindbrain boundary. e » E——— — malformation syndromes. The presence of this rare phenotype within this model offers an opportunity to explore the
P17 Wildtype P3 Wildtype Cerebellum 2 Rsal ptog TR Datiere2 B Cere i differences between cholesterol biosynthesis malformation syndromes that feature hydrocephalus and cerebellar

Objectives phenotypes and those that do not. This may lend credence to the theory of toxic precursors as a main driver of

« Characterize phenotypic changes in the brain associated with tissue specific ablation of Hsd77b7 from dorsal midline . 5 ' . ' disease.
« Determine the underlying mechanisms of the noted changes g .

Hypothesis/Objectives

Next Steps

Immediate
« Elucidate the mechanisms behind the cerebellar phenotype. With a specific direction in mind (disruption of the
isthmic organizer after E8.5), we can select more in-depth experiments in which to complete our second objective.
Planned experiments include:
«  Whole mount imaging of Hsd17b7F'oXWT- Wnt1cre2¢"WT mice with a fluorescent protein at timepoints E9, E10, and
E12.5 to better understand how loss of Hsd77b7 impacts the isthmic organizer and downstream differentiation of
cerebellar primordia

Experimental Design

1000 pm 1000 um
kT =ty

Step 1. Cre-Lox system is leveraged to delete Hsd17b7 in Wnt-

et s l o ai7b7 mouse 1 cell lineages, resulting in Hsd17b7FoWT: Wnt1cre2CreMT - Explore phenotypes outside of the brain. Outside of changes in the brain, we have also found that this mouse model
. e L mice. Genotype is confirmed through PCR. Hsd17b7FloxFlox: sometlmes]c has a cleft palate of varying severity. Similar Wni7cre2 models have also been associated with pathologic
= w3 ‘ s Wht1cre2°e™WT were not obtainable due to the severity of changes of ganglia and the heart.
A &) clinical disease by P17 in Hsd17b7FoXWT: \Wnt1cre2CeWT mice. Planned experiments include:
Loss of target gene in organs % Inclusion of target gene in ) H&E and Skeletal preps Of the Cleft palate phenOtype
with cretransgene Offspring heterozygous for  organs without retransgene * Possible H&E of enteric organs, gross heart dissections
LoxP "floxed" Hsd17b7 an
S ENEgEE - Lateral Hemisphere Vermis _ . _ _ _ .
L = « Tissue specific ablation of Hsd17b7 from the forebrain. Our past research with the “Rudolph” hypomorph illustrates
Step 2. 18 postnatal day (P)0 neonates, 33 P3 - Gross Cerebellar changes: Hsd17b77oWT, Wnt1cre2¢re/WT Calbindin IHC: Hsd17b7FoWT: Whnt1cre2CeWT cerebella feature thickened bands and clumping of Purkinje cells with vastly increased signaling pathologic changes within the forebrain. We are currently running similar tissue specific ablation experiments on an
neonates, and 10 P17 mice were collected. Brains = j — = cerebella are grossly small and dysmorphic with vertically oriented from the region of the deep cerebellar nuclei (arrow). A cell count on NIS-elements of red channel cells within folia revealed no significant difference Emx1-cre background to explicate the underlying mechanisms.
were dissected out, paraffin embedded, and were < vermes and visible superior and inferior colliculi. between cell counts between wildtype and Hsd17b7FoXWT; Wit1cre2CreWT,
prepared for histologic examination and stained with Long term
H&E in standard fashion. e E16 whole brain E16 cerebellum P3 cerebellum P17 cerebellum P17 cerebellum Cerebellar histology: At timepoint E16.5 the cerebellar « The overarching goals of this research are threefold: to understand the mechanisms behind disease within the
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Human T-cell leukemia virus type 1.

 Human T-cell leukemia virus type 1 (HTLV-1) is an
oncogenic human retrovirus
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Figure 2. Empty vector (cDNA), codon optimized envelope (CO Env), or pCMV-HT1Env
plasmid were transfected into HEK293T cells. (A) Protein expression was evaluated by
western blot using gp46 antibody or B-actin (loading control). SLB-1 cells were included
as a positive control and Jurkat cells served as a negative control. (B) Cell surface
expression of envelope was measured by flow cytometry. SLB-1 cells (blue peak) were
included as a positive control for surface expression of envelope protein.

o

Env mMRNA-LNP is immunogenic and decreases
proviral load in New Zealand rabbits

Intracellular IFN-y production in CD4 and CD8 T cells
In response to Env mMRNA-LNP vaccination

Figure 5. Rabbit PBMCs were cultured ex vivo with PMA/lonomycin (PMA/I), RSV
peptide (negative control), or various Env peptide pools. After overnight stimulation, cells
were fixed, permeabilized, stained, and analyzed by flow cytometry for CD4, CD8, and
IFN-y expression. (A) Flow gating strategies used to identify CD4+IFN-y+ and CD8+IFN-
y+ populations in stimulated healthy rabbit PBMCs. Percentage of IFN-y+ cells in the
CD4* (B) and CD8* T-cell populations (C) in Env and GFP mRNA-LNP vaccinated
rabbits after vaccination (week 0) and 2 weeks after viral infection were pooled. (B-C)

Each symbol represents an individual rabbit. )

Env mMRNA-LNP vaccine elicits neutralizing antibody

responses

proviral load at 6 wpi. (E) Neutralizing Ab activity was measured using a syncytia inhibition
assay. Percent inhibition was calculated by taking the average number of syncytia
counted in rabbit sera wells divided by the average number of syncytia in virus control
wells (no sera), multiplied by 100. Sera samples prior to vaccination (prevax) and 5 weeks
after vaccine boost (postvax) were measured. Each symbol represents an individual
rabbit. Linear mixed model was used for analysis. Tukey’s method was used for adjusted
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